
Discrete Applied Mathematics 156 (2008) 2423–2428
www.elsevier.com/locate/dam

Note

On multicolour noncomplete Ramsey graphs of star graphs

Sachin Gautama,1, Ashish Kumar Srivastavab,2, Amitabha Tripathib,∗

a Department of Computer Science & Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110 016, India
b Department of Mathematics, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India

Received 27 January 2006; received in revised form 7 October 2007; accepted 23 October 2007
Available online 26 December 2007

Abstract

Given graphs G, G1, . . . , Gk , where k ≥ 2, the notation

G → (G1, G2, . . . , Gk)

denotes that every factorization F1 ⊕F2 ⊕· · ·⊕Fk of G implies Gi ⊆ Fi for at least one i , 1 ≤ i ≤ k. We characterize G for which

G → (K(1, n1), K(1, n2), . . . , K(1, nk))

and derive some consequences from this. In particular, this gives the value of the graph Ramsey number R(K(1, n1), K(1, n2), . . . ,

K(1, nk)).
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Noncomplete Ramsey Theory concerns itself with the factorization of noncomplete graphs. More specifically, given
graphs G1, G2, . . . , Gk , where k ≥ 2, we use the standard notation

G → (G1, G2, . . . , Gk) (1)

to mean that for every factorization

G = F1 ⊕ F2 ⊕ · · · ⊕ Fk, (2)

we have Gi ⊆ Fi for at least one i , 1 ≤ i ≤ k. Recall that a factor F is a spanning subgraph of G, and (2) means that
the edges of each factor Fi partition the edges of G. Equivalently, if we k-colour the edges of G, the edges of Fi form
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the k colour classes. The natural problem in noncomplete Ramsey Theory is to determine all such G for which (1)
holds. Given that it is often difficult to achieve this, it is often the case that one looks at various necessary conditions
satisfied by such G, such as giving bounds on its order, size, minimum or maximum degree, chromatic number and
clique number. A related problem is the determination of all G for which (1) holds but such that

G \ e 6→ (G1, G2, . . . , Gk)

for all e ∈ E(G). Such graphs G are called (G1, G2, . . . , Gk)-minimal.
Since the general multicolour problem appears quite difficult even for complete graphs, most work has centered

around the case k = 2. In what follows, we use the standard notation Kn for the complete graph of order n, and
K(m, n) for the complete bipartite graph with partite sets of orders m, n. Various necessary conditions for the case
G → (Km, Kn) are known [2,5,6], as is a characterization for G for which G → (K(1, n), K(1, n)). The purpose of
this article is to explore those graphs G for which

G → (K(1, n1), K(1, n2), . . . ,K(1, nk)). (3)

In view of the fact that

G → (G1, G2, . . . , Gk) if and only if C → (G1, G2, . . . , Gk)

for some component C of G, provided each Gi is connected, we restrict our attention to connected graphs G.

2. Preliminaries

Since factorization plays a crucial part in the investigation of graphs G for which (1) holds, we first recall some key
results. For proofs, we refer the reader to standard texts like [1,11]. We recall that a k-factor of a graph is a k-regular
spanning subgraph.

Theorem T1 (Tutte [10]). A nontrivial graph G has a 1-factor if and only if for every proper subset S of vertices of
G, the number of odd components of G \ S does not exceed |S|.

Theorem P (Petersen [8]). A nonempty graph G is 2-factorable if and only if G is 2n-regular for some n ≥ 1.

An immediate and useful consequence is that a 2n-regular graph has a 2m-factor for each m < n. Another useful
result is the following.

Lemma A. For every n ≥ 1, K2n is 1-factorable.

The concept of a k-factor has a generalization in the following sense. Given a graph G and a function f : V (G) →

N ∪ {0}, G is said to have an f -factor provided it has a subgraph H such that degH v = f (v) for each v ∈ V (G).
Tutte [9] gave a necessary and sufficient condition for a graph to have an f -factor, relating it to checking whether a
related graph (G, f ) has a 1-factor. The construction of (G, f ) is as follows:

Corresponding to each vertex v of G are complete bigraphs K (d(v), e(v)), with partite sets A(v) of size
d(v) = deg v and B(v) of size e(v) = deg v − f (v). Corresponding to each edge uv of G, join one vertex of
A(u) with one vertex of A(v).

Theorem T2 (Tutte [9]). A graph G has an f -factor if and only if the graph (G, f ) has a 1-factor.

The following result, due to U.S.R. Murty, is closely connected and central to our paper.

Theorem M (Murty). Let G be a connected graph and n a positive integer. Then G → (K(1, n), K(1, n)) if and only
if

(a) ∆(G) ≥ 2n − 1, or
(b) n is even and G is a (2n − 2)-regular graph of odd order.

One class of graphs for which the Ramsey numbers are exactly known is the set of graphs each of which is a
star graph. Given graphs G1, G2, . . . , Gk , where k ≥ 2, the graph Ramsey number R (G1, G2, . . . , Gk) is the least
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positive integer p such that Kp → (G1, G2, . . . , Gk). Graph Ramsey numbers generalize the notion of Ramsey
numbers R (n1, n2, . . . , nk), where n1, n2, . . . , nk are positive integers:

R (n1, n2, . . . , nk) := R
(
Kn1 , Kn2 , . . . ,Knk

)
.

Theorem BR (Burr and Roberts [3]). Let n1, n2, . . . , nk be positive integers, e of which are even. Then

R(K(1, n1), K(1, n2), . . . ,K(1, nk)) =

{
N + 1 if e is even and positive;
N + 2 otherwise,

where N =
∑k

i=1(ni − 1).

One of the most fundamental results on edge colouring was proven by Vizing [12], and later independently, by
Gupta [7].

Theorem V (Vizing [12]; Gupta [7]). For any simple graph G with maximum vertex degree ∆, the edge chromatic
number, χ ′(G) satisfies the inequality

∆ ≤ χ ′(G) ≤ 1 + ∆.

3. Main results

We shall assume throughout that n1, n2, . . . , nk are arbitrary positive integers and that N = (n1 − 1) + (n2 − 1) +

· · · + (nk − 1). We shall denote the condition

G → (K(1, n1), K(1, n2), . . . ,K(1, nk)) (4)

by stating that G satisfies (n1, n2, . . . , nk). We begin by giving some simple necessary conditions on graphs G which
satisfy (n1, n2, . . . , nk).

Lemma 1. Let G be a connected graph with p vertices and q edges. If

G → (K(1, n1), K(1, n2), . . . ,K(1, nk)),

then

(a) p ≥ R (K(1, n1), K(1, n2), . . . ,K(1, nk)), and
(b) q ≥ N + 1.

Moreover, the bounds are sharp.

Proof. Suppose G is a connected graph which satisfies (n1, n2, . . . , nk).

(a) If p < R = R (K(1, n1), K(1, n2), . . . ,K(1, nk)), by definition of the Ramsey number R, Kp would not satisfy
(n1, n2, . . . , nk). But then nor would G since G has the same order as Kp.

To show this bound is best possible, consider the complete graph KR . By the definition of a Ramsey number,
this satisfies (n1, n2, . . . , nk), and clearly has order R.

(b) If q ≤ N , G could be factorized into k factors, with ni − 1 edges in each factor for 1 ≤ i ≤ k. But then G does
not satisfy (n1, n2, . . . , nk).

The star graph K(1, N + 1) satisfies (n1, n2, . . . , nk) and has size N + 1, so that the bound for q is best
possible. �

We need a construction before our next result. Given a graph G, we may construct a ∆(G)-regular graph G? of
which G is a induced subgraph. If G is not regular, we make two copies of G and join identical vertices whose degree
is not maximal. This results in a graph in which the difference between ∆ and δ has decreased by 1. Repetition of
this process ∆(G) − δ(G) times provides the graph G?. We call G? the ∆-regularization of G. This construction is
apparently due to D. König (see [4], p. 40). More generally, for each k ≥ ∆, this process can now be extended by
increasing the degree of each vertex to arrive at a k-regular supergraph of G, which we denote by G?

k and call its
k-regularization. There is a simple connection between a graph and its regularization in a specific instance as the
following result shows.
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Lemma 2. Let n1, n2, . . . , nk be positive integers. If ∆(G) = N, then

G → (K(1, n1), K(1, n2), . . . ,K(1, nk))

if and only if

G?
→ (K(1, n1), K(1, n2), . . . ,K(1, nk)).

Proof. Suppose G? satisfies (n1, n2, . . . , nk) and G does not. Then G = F1 ⊕ F2 ⊕ · · · ⊕ Fk , with ∆(Fi ) ≤ ni − 1
for 1 ≤ i ≤ k. However, ∆(G) = N forces ∆(Fi ) = ni − 1 for 1 ≤ i ≤ k. The edge sum of the ∆-regularization of
these factors is then N -regular, and hence it is the ∆-regularization of G. But this contradicts our assumption that G?

satisfies (n1, n2, . . . , nk). The converse is trivial. �

Lemma 3. If G is r-regular, then G?
r+1 is 1-factorable.

Proof. Let G be an r -regular graph. Then, by Theorem V, G is r + 1 edge-colourable. The construction of G?
r+1

involves making two copies of G and joining identical vertices. We use identical colours for edges in the two copies
of G, using r + 1 colours. Moreover, since each vertex v has degree r in G, only r colours are used for colouring the
edges incident with v in each copy. Thus, there is a colour free for the edge joining identical vertices in the two copies.
This proves that G?

r+1 is also r + 1 edge-colourable. Then the spanning subgraphs with edges from each of the r + 1
colour classes are 1-factors of G?

r+1. �

Lemma 4. Let n1, n2, . . . , nk be positive integers, and let G be a connected graph. The following are equivalent:

(a) G → (K(1, n1), K(1, n2), . . . ,K(1, nk)) H⇒ ∆(G) ≥ N holds for every choice of positive integers
n1, n2, . . . , nk .

(b) G is r-regular H⇒ G?
r+1 is 1-factorable.

Proof. (a) ⇒ (b): Let G be an r -regular graph. Then

G 6→ (K(1, 2), K(1, 2), . . . ,K(1, 2))︸ ︷︷ ︸
r+1 terms

,

since ∆(G) = r = N − 1 and part (a) holds. Thus, there is a factorization

G = F1 ⊕ F2 ⊕ · · · ⊕ Fr+1,

with ∆(Fi ) = 1 for each i . Since G is r -regular, corresponding to each vertex v of G, there is a factor Fi(v) such that
deg v equals 1 in each factor except in Fi(v) where deg v = 0.

Fix i , 1 ≤ i ≤ r + 1. Then the subgraph Hi of G?
r+1 consisting of two copies of Fi together with the edges joining

those identical vertices of degree 0 in Fi is a 1-factor of G?
r+1. Thus, G?

r+1 is 1-factorable.
(b) ⇒ (a): Suppose G satisfies (n1, n2, . . . , nk) and ∆(G) < N . Since G?

N−1 is an (N − 1)-regular graph, by part
(b), G?

N is 1-factorable. Thus, we can write

G?
N = F1 ⊕ F2 ⊕ · · · ⊕ FN

= H1 ⊕ H2 ⊕ · · · ⊕ Hk,

where each factor Fi is 1-regular, H1 equals F1 ⊕ · · · ⊕ Fn1−1, H2 equals the edge sum of the next (n2 − 1)Fi ’s, and
so on, so that each factor Hi is (ni − 1)-regular. But then

G = (H1 ∩ G) ⊕ (H2 ∩ G) ⊕ · · · ⊕ (Hk ∩ G)

implies that G does not satisfy (n1, n2, . . . , nk). This contradiction proves ∆(G) ≥ N . �

Theorem 1. Let G be a connected graph such that

G → (K(1, n1), K(1, n2), . . . ,K(1, nk)) .

Then ∆(G) ≥ N.
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Proof. This is a direct consequence of Lemmas 3 and 4. �

Theorem 2. Let G be a connected graph, and let n1, n2, . . . , nk be positive integers of which e are even. Let G? be
the ∆-regularization of G, as defined above. Then

G → (K(1, n1), K(1, n2), . . . ,K(1, nk))

if and only if

(a) ∆(G) ≥ N + 1, or
(b) G is N-regular, of odd order and e is even and non-zero, or
(c) G is N-regular, of even order, at least one ni is even, and G does not have an (ni − 1)-factor for at least one even

ni , or
(d) G is not N-regular, ∆(G) = N and G?

→ (K(1, n1), K(1, n2), . . . ,K(1, nk)).

Proof. Suppose first that at least one of the conditions is met.
Condition (a) implies G satisfies (n1, n2, . . . , nk) by the Pigeonhole Principle. Suppose condition (b) holds and

G = F1 ⊕ F2 ⊕· · ·⊕ Fk , with ∆(Fi ) ≤ ni − 1 for 1 ≤ i ≤ k. The regularity of G forces each Fi to be (ni − 1)-regular.
But each Fi is of odd order and at least one ni − 1 is odd, and this is a contradiction.

Suppose next that condition (c) is met. Arguing as in the previous case, we observe that if G did not satisfy
(n1, n2, . . . , nk), it must have an (ni − 1)-factor for each i . But G does not have such a factor for even ni , and so this
is not the case.

Finally, suppose condition (d) holds. By Lemma 2, G satisfies (n1, n2, . . . , nk). This completes the sufficiency of
each of the four conditions.

Conversely, suppose G satisfies (n1, n2, . . . , nk). If ∆(G) ≥ N + 1, there is nothing to prove; suppose ∆(G) ≤ N .
If G is N -regular and of odd order, then N must be even, so that e must be even. If e = 0, each ni − 1 is even

and since G is 2-factorable by Theorem P, G has an (ni − 1)-factor for each i . This contradicts the assumption that G
satisfies (n1, n2, . . . , nk). Thus, in this case, e must be non-zero.

Suppose that G is N -regular and of even order. If G has an (ni −1)-factor for each even ni , then the graph obtained
from G by removing each of these factors is regular of even degree, and hence 2-factorable, and so has (ni −1)-factors
for odd ni as well. But then G does not satisfy (n1, n2, . . . , nk), and this contradiction implies that G does not have
(ni − 1)-factors for at least one even ni .

Finally, suppose G is not N -regular. Since G satisfies (n1, n2, . . . , nk), ∆(G) = N by Theorem 1, and clearly G?

satisfies (n1, n2, . . . , nk) as well. This completes the characterization. �

The characterization of G that satisfies (n1, n2, . . . , nk) as given by Theorem 2 makes it easy to determine the
Ramsey numbers and the bipartite Ramsey numbers of star graphs. Ramsey numbers of star graphs were determined
by Burr and Roberts (Theorem BR in Section 2). However, our proof derives their result as a consequence of a more
general result, and is not restricted to determining only complete graphs that satisfies (n1, n2, . . . , nk).

Corollary 1 (Burr and Roberts [3]). Let n1, n2, . . . , nk be positive integers, e of which are even. Then

R(K(1, n1), K(1, n2), . . . ,K(1, nk)) =

{
N + 1 if e is even and positive;
N + 2 otherwise,

where N =
∑k

i=1(ni − 1).

Proof. This is a direct consequence of Theorem 2. Observe that KN+2 satisfies (n1, n2, . . . , nk) by condition (a). To
complete the proof, we need to show that KN+1 satisfies (n1, n2, . . . , nk) if and only if e even and non-zero. If e is
even and non-zero, condition (b) applies to KN+1. Conversely, suppose KN+1 satisfies (n1, n2, . . . , nk). If N is even,
by condition (b), e is even and non-zero. If N is odd, by condition (c), KN+1 does not have an (ni − 1)-factor for at
least one even ni , which contradicts Lemma A. �

Corollary 2. Let n1, n2, . . . , nk be positive integers, and let N = (n1 − 1) + (n2 − 1) + · · · + (nk − 1). Then

K(p, p) → (K(1, n1), K(1, n2), . . . ,K(1, nk))

if and only if p ≥ N + 1.
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Proof. Suppose K(p, p) → (K(1, n1), K(1, n2), . . . ,K(1, nk)). Since K(p, p) is 1-factorable, K(N , N ) has an
(ni − 1)-factor for each i , 1 ≤ i ≤ k, so that K(N , N ) does not satisfy (n1, n2, . . . , nk). Therefore, p > N .
Conversely, K(N + 1, N + 1), and hence K(p, p) for each p ≥ N + 1, satisfies (n1, n2, . . . , nk) because of the
Pigeonhole Principle. �
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